Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1

Shukui Guo, Jason Boyd, Ramaswami Sammynaiken, and Michèle C. Loewen

Abstract: AtCCD1 and AtNCED3 are related carotenoid cleavage enzymes from Arabidopsis thaliana that catalyze the oxidative cleavage of, respectively, the 9,10 (9',10') double bonds of carotenoid substrates such as β-carotene, and the 11,12 double bond of 9-cis epoxycarotenoids. Although the cellular and cleavage functionalities of these enzymes have been reported, their mechanisms and related structural environments mediating these disparate specificities in homologous enzymes have not been well characterized. By relating the differences observed in UV and visible light absorption and Cu(II) electron paramagnetic signals to variations in sequence alignments and 3-D homology models of the two A. thaliana enzymes, we identified a putatively proximal cysteine residue (Cys352) in AtCCD1 that is not conserved in AtNCED3. Spectral analysis of the Cys to Ala mutant confirmed its uniqueness and proximity to the metal binding site, but precluded any role for the residue in the mediation of the observed metal binding affinity or associated steric constraint differences. Further analysis of kinetic substrate cleavage properties indicated a decrease in \(V_{\text{max}} \) and a subtle increase in \(K_m \) for the C352A mutant compared with those observed for the wild-type, thus confirming catalytic site proximity and suggesting possible roles for the unique cysteine in the modulation of substrate affinity and (or) the reaction rate of AtCCD1.

Key words: carotenoid cleavage enzymes, carotenoids, type II Cu center, cysteine mutagenesis.

Introduction

Carotenoid cleavage enzymes catalyze the oxidative cleavage of double bonds of carotenoid substrates, yielding physiologically important signaling molecules (Tan et al. 2003; Bouvier et al. 2005). These enzymes are part of an increasingly recognized family, with representatives now identified in organisms ranging from bacteria to plants and humans (Moise et al. 2005; Auldridge et al. 2006). Significant variability exists between homologous family members in terms of substrate affinities, cleavage specificities, and associated reaction rates. Two of the best characterized carotenoid cleavage enzymes include the Arabidopsis thaliana carotenoid cleavage dioxygenase 1 (AtCCD1) and the A. thaliana 9-cis epoxycarotenoid cleavage dioxygenase 3 (AtNCED3). AtCCD1 is localized to the cytosolic fraction of leaf cells and cleaves the 9,10 and 9',10' double bonds of ...
a variety of carotenoid substrates, including β-carotene, lut
tein, and β-apo-8’-carotenal, yielding compounds related to β-ionone and dialdehyde fragments (Fig. 1A) (Schwartz et al. 2001; Schmidt et al. 2006). In contrast, AtNCED3 is localized to the plastid and cleaves the 11,12 double bond of 9-cis epoxycarotenoids (violaxanthin and neoxanthin), producing C25 aldehyde compounds and the important abscisic acid hormone precursor molecule, xanthoxin (Fig. 1B) (Iuchi et al. 2001). AtNCED3 maintains high homology with, and a similar function to, the maize VP14 and cowpea NCED3 enzymes known to be responsible for drought stress inducible abscisic acid biosynthesis (Schwartz et al. 1997; Iuchi et al. 2001). AtCCD1 and AtNCED3 share approximately 38% amino acid sequence identity.

Carotenoid cleavage enzymes are non-heme ferrous ion-dependent oxygenases (Ryle and Hausinger 2002). Non-heme ferrous enzymes lack intense porphyrin-based electronic transitions, and the ferrous centers are often spectroscopically silent (Solomon 2001), making analysis of the active site mechanisms by classical biophysical methods more challenging. However, the crystal structure of a related cyanobacterial apo-carotenal oxygenase (ACO) was recently reported (Kloer et al. 2005). In this crystal structure, the non-heme Fe2+ is coordinated by the N atoms of four conserved histidine residues, differing somewhat from the 2-His-1-carboxylate facial triad structure identified in other mononuclear non-heme Fe(II) enzymes (Hegg and Que 1997). Site-directed mutagenesis of a mammalian carotenoid cleavage enzyme has further confirmed the importance of the four conserved histidines in enzyme function (Poliakov et al. 2005). In addition to providing some mechanistic insight into ACO, the crystal structure also yields a template with which other carotenoid cleavage enzyme structures can be simulated by homology modeling. Generated models can be tested by other biophysical methods, such as ultraviolet/visible (UV/Vis) absorption spectroscopy, which has been used successfully to investigate structure–function relationships in other non-heme iron enzymes (Coufal et al. 1999; Hegg et al. 1999; Franco et al. 2001; Hinks et al. 2002; Mathe et al. 2002; Kimura et al. 2005). Additionally, although low-spin ferrous is diamagnetic and thus, electron paramagnetic resonance (EPR) silent (Solomon 2001), and high-spin ferrous can only be observed in parallel mode EPR (Hinks et al. 2002), EPR spectra revealing important structural information for non-heme iron proteins have been reported under oxidizing conditions (Deligiannakis et al. 1997; Hinks et al. 2002; Mathe et al. 2002; Rocklin et al. 2004), labeled with NO (Deligiannakis et al. 1997; Coufal et al. 1999; Hegg et al. 1999; Rocklin et al. 1999; D’Autreaux et al. 2005), or as Cu(II)-substituted derivatives (Whiting et al. 1997; Coulter et al. 1999; Hegg et al. 1999; Hogan et al. 2000).

Although some of the basic cellular and cleavage functions of carotenoid cleavage enzymes have been reported, the enzymatic mechanisms and related structural aspects leading to the observed diversity in substrate and cleavage specificities and catalytic reaction rates associated with the different members of this family remain largely uncharacterized. To understand these structure–function relationships, we initiated comparative UV/Vis absorption analyses of the catalytic metal binding sites of recombinant forms of AtCCD1 and AtNCED3, which indicated differences related to either affinity or steric accessibility of the iron sites. Further, relating differences in observed Cu(II) EPR signals to amino acid sequence alignments and 3-D homology models led to the identification of a cysteine residue (Cys352) proximal to the catalytic site in AtCCD1 that is not conserved in AtNCED3. Spectral characterization of the AtCCD1 C352A mutant confirmed the residue’s proximal localization to the metal binding site, but negated a role in mediating the metal affinity- and (or) accessibility-related differences. Subsequent kinetic analyses yielded evidence that further supported the proximal catalytic site localization of the residue and suggested a possible role for the unique cysteine in the mediation of substrate binding and (or) cleavage reaction of this enzyme.

Materials and methods

Materials

All materials were obtained from Sigma–Aldrich with the following exceptions: *Escherichia coli* strain BL21(DE3) was from Novagen; pGEX2T was from GE Healthcare; pRL296a was a gift from M. Cygler, Biotechnology Research Institute (Montreal, Quebec, Canada); Quickchange Site Directed Mutagenesis kit was from Stratagene; glutathione-S-transferase (GST)–agarose was from Amer sham Biosciences.

Overexpression and purification of recombinant enzymes

cDNAs encoding wild-type AtCCD1, AtNCED3, and the related AtCCD1 site-specific C352A mutant were overexpressed in *E. coli* strain BL21(DE3), using pGEX2T or pRL296a vectors to encode GST fusion proteins. The site-
specific mutation was introduced into the AtCCD1 cDNA using the Quickchange Site Directed Mutagenesis kit, according to the manufacturer’s instructions, with the following primers: forward primer, 5’-GATGAAGTCTCCCT- CATCCTGCTTCGTCTGGAATCCAG-3’; reverse primer, 5’-CTGGATTCTCAAGACGAGGAGTGAATCCAG-3’. Single colony transformants were used to inoculate 2 × YT medium (16 g tryptone, 10 g yeast extract, 5 g NaCl per litre) with 50 μg/mL ampicillin, and were grown with shaking at 37 °C. Upon reaching an OD₆₀₀ of 1.0, 0.1 mmol/L isopropyl β-D-thiogalactopyranoside was added to the cultures, which were subsequently incubated with shaking at 25 °C (AtCCD1) or 30 °C (AtNCED3) for an additional 8 h. The E. coli cells were harvested by centrifugation, resuspended in phosphate buffered saline (8 g NaCl, 0.2 g KCl, 1.15 g Na₂HPO₄·7H₂O, and 2 g KH₂PO₄ per litre, pH 7.4) containing 1 mmol/L phenylmethylsulfonyl fluoride, and lysed with 3 × 30 s pulses of sonication. The recombinant proteins were purified with GST–agarose eluting with buffer (50 mmol/L Tris–HCl, 5 mmol/L reduced glutathione, pH 7.5) as per the manufacturer’s specifications (Smith and Johnson 1988). The purity of the fusion protein was assessed by standard SDS–PAGE.

In vitro activity assays

Activity assays for AtCCD1 were performed essentially as described in Schmidt et al. (2006), with the following modifications: (i) 50 μL of ethanol containing different amounts of β-apo-8′-carotenal (final concentrations for kinetic experiments ranged from 0.1 to 40 μmol/L) and 20 μL of ethanolic β-octylglucoside solution (4% w/v) were combined and evaporated to dryness (ii) 200 μL of 100 mmol/L Bis–Tris (pH 7.0), containing 50 μg protein, 0.5 mmol/L FeSO₄, and 5 mmol/L ascorbate was added, and the solution was shaken vigorously and incubated at 30 °C for 15 min; (iii) 400 μL of methanol was subsequently added to terminate the reaction. Enzyme assay products were detected by high performance liquid chromatography analysis applied to a Supelcosil column (3.3 cm × 4.6 mm) packed with C18 reversed-phase material with a 5 μm particle size. Elution was performed with an isocratic solvent, 80% acetone:20% water (v/v), at a constant flow of 1.0 mL/min. Absorption of the eluting products was recorded at 242 nm and product identities were confirmed by UV/Vis spectral characterization based on expected absorption maxima from the literature (Parry and Horgan 1991).

Fe²⁺ chelation and Cu²⁺ reconstitution of recombinant enzymes

To remove the iron from AtCCD1 or AtNCED3, the GST fusion proteins were washed with 50 mmol/L EDTA while still bound to the GST–agarose affinity resin. Residual EDTA was removed by extensively washing the resin with 30 equivalent resin volumes of PBS buffer. In cases in which metal depleted enzyme was required, the fusion protein was then immediately eluted as described above. To get Cu²⁺-reconstituted proteins, the EDTA-treated fusion-protein loaded resin was subsequently incubated with 5 resin volumes of 200 μmol/L CuSO₄ with shaking for 30 min at 4 °C, washed with excess PBS buffer to remove residual free Cu²⁺, and then also eluted as described above. Ultrafiltration (MWCO, 10 kDa) was used to concentrate the sample and replace the reduced glutathione containing elution buffer with PBS buffer.

Spectral measurements

Absorption spectra of purified fusion protein samples were measured at room temperature using a PerkinElmer Lambda 35 UV/Vis spectrophotometer. The concentrations of AtCCD1 and AtNCED3 were 6 and 11 μmol/L, respectively, in PBS buffer (as determined by measuring the absorption at 280 nm based on the relation 1 A₂₈₀ = 0.5 mg/mL, derived from concentration estimations of protein purified from cells transformed with pGEX-1 and using bovine serum albumin as a standard (Smith and Johnson 1988)).

X-band EPR spectra were obtained at 100 K, 20 μW, and 9.3971 GHz and a modulation amplitude of 1 G using a Bruker EMX electron paramagnetic resonance spectrophotometer and an Oxford ESR 900 cryostat. Purified fusion protein or Cu²⁺-reconstituted samples (in PBS buffer) were concentrated, degassed, and sealed in EPR tubes. The protein concentrations for EPR were 0.13 and 0.11 mmol/L for AtCCD1 and AtNCED3, respectively. The EPR data were analyzed with the Bruker WINEPR program.

Homology modeling and sequence alignments

SWISS MODEL (Schwede et al. 2003) was used for comparative homology modelling by applying the ACO crystal structure as a template (Protein Data Bank accession No. 2BIW) (Kloer et al. 2005). Deep View – Swiss PDB Viewer and Visual Molecular Dynamics software were used for imaging the model (Humphrey et al. 1996; Guex and Peitsch 1997). Amino acid sequences were aligned using
the T-Coffee multiple sequence alignment algorithm (Notredame et al. 2000). The sequence identities of ACO with AtCCD1 and AtNCED3 were determined to be 24.9% and 22.5%, respectively.

Results and discussion

Characterization of recombinant purified AtCCD1 and AtNCED3

AtCCD1 and AtNCED3 recombinant GST fusion proteins were affinity purified and characterized by SDS–PAGE analysis. Relatively pure bands were observed at the expected molecular masses of approximately 75 and 90 kDa, respectively (Fig. 2A). Average overall yields of recombinant protein were estimated at 1.5 mg of AtCCD1 and 6 mg of AtNCED3 fusion proteins purified per litre of induced E. coli cell culture. Non-quantitative assays probing the catalytic activity of the recombinant purified fusion proteins indicated that AtCCD1 cleaves β-apo-8’-carotenal to produce the C17-dialdehyde (Fig. 2B i, peak 2) as characterized by the observed absorption maxima for the product at 424 and 436 nm, which was expected, based on the literature (Wolz et al. 1999; Fester et al. 2002; Mathieu et al. 2005). Similarly, AtNCED3 cleaved 9’-cis-neoxanthin to produce the C25 allenic apo-aldehyde (Fig. 2B ii, peak 2) as confirmed by observation of the product’s absorption maximum at 422 nm, which was also expected, based on the literature (Parry and Horgan 1991).

UV/Vis absorption analysis of AtCCD1 and AtNCED3 metal binding sites

UV/Vis absorption analyses of both wild-type AtCCD1 and AtNCED3 fusion proteins reveal characteristic iron absorption peaks at 413 and 650 nm, and an absorption shoulder at 530 nm (Figs. 3A and 3B, line a), indicating that both recombinant proteins do naturally bind iron as ex-
Fig. 3. Spectral characterization of AtNCED3 and AtCCD1 fusion proteins. (A) UV/visible light (UV/Vis) absorption spectra of AtNCED3. Line a, native protein; line b, AtNCED3 treated with 50 mmol/L EDTA; line c, AtNCED3 treated with 0.2 mmol/L CuSO₄. (B) UV/Vis absorption spectra of AtCCD1. Line 1, native protein; line 2, AtCCD1 treated with 50 mmol/L EDTA; line 3, AtCCD1 treated with 0.2 mmol/L CuSO₄. (C) Electron paramagnetic resonance spectrum of Cu²⁺-reconstituted AtNCED3 acquired at 100 K, 9.3971 GHz, and 20 μW, and with a modulation of 1 G (1 G = 0.1 mT).

EPR spectral analyses of AtNCED3 and AtCCD1 metal binding sites

To further probe the detected differences in the two metal binding sites, we initially looked for EPR signals arising from wild-type Fe²⁺-bound AtCCD1 and AtNCED3 at 100 K, but the samples were EPR silent (data not shown). However, after Cu²⁺ substitution, AtNCED3 (Fig. 3C) yielded a type II Cu EPR signal with the following parameters: $g_{||}$, 2.252; $A_{||}$, 178.5 G; and g_\perp, 2.058; thus, Cu²⁺ is indeed retained in the metal binding site of the enzyme upon substitution (Kosman et al. 1998). Simulation indicates that the four expected nitrogens around the Cu²⁺ are not perfectly square planar but do correlate with the coordination observed in the ACO structure (Kloer et al. 2005). This includes coordination by the N, as opposed to N of histidines, as in nitrite reductase (Tocheva et al. 2004). Surprisingly, Cu²⁺-substituted AtCCD1 showed no EPR signal (data not shown). The most obvious explanation for this result is that Cu²⁺ is not retained in the AtCCD1 active site. However, after storage of the washed reconstituted enzyme exposed to air for two months at −20 °C, a Cu(II) signal was observed by EPR (data not shown). This result, combined with the previous observation of the initial Cu²⁺-dependent loss of the Fe²⁺ UV/Vis signal for AtCCD1, strongly suggests that a redox process is involved. Likely, the Cu²⁺ is retained in the AtCCD1 site but is reduced to the cuprous form (Cu⁺), with corresponding oxidation of proximally located sulfhydryl groups to a disulfide form. Sulphydryl oxidation with corresponding reduction of Cu²⁺ has been well established (Creighton 1984), and if such residues were localized to the active metal binding site of AtCCD1, they could be responsible for this EPR silence.

Putative positional evaluation of cysteine residues in AtCCD1 and AtNCED3

To probe the localization of cysteine residues with respect to the metal-binding sites of AtCCD1 and AtNCED3, comparative homology models of the enzymes were produced using SWISS MODEL (Schwede et al. 2003), based on the ACO crystal structure template (Kloer et al. 2005). Both models maintained the overall ACO fold (which consists of a seven-bladed β propeller with four histidines at the propeller axis) and accommodated coordination of the metal binding site through the N of the four conserved histidine residues. AtCCD1 has five cysteine residues in total, including Cys74, Cys332, Cys352, Cys407, and Cys495. Only one of these (Cys352) was found to be proximally located to the metal binding site (8.5 Å from the iron center, Table 1A and Fig. 4A) and might thus serve as the reducing agent in the enzyme. In contrast, EDTA had no effect on the AtCCD1 spectrum (Fig. 3B, line b), suggesting that the iron binding site in AtCCD1 is either sterically inaccessible to EDTA and (or) mediates a much stronger affinity for iron compared with the AtNCED3 enzyme. Interestingly, incubation of AtCCD1 with Cu²⁺ following EDTA treatment did lead to a loss of the absorption peaks at 413 and 650 nm (Fig. 3B, line c), suggesting that, although EDTA could not chelate the iron from AtCCD1, Cu²⁺ was able to displace Fe²⁺ from the binding site, most likely by substituting in its place.
formation of Cu\(^{+}\) in AtCCD1. Although distances between the different cysteine sulfur atoms in the model were all over 10 Å, precluding any obvious possible disulfides (Table 1A), closer scrutiny indicated that rotation of \(\chi_1\) torsion angles for both Cys332 and Cys352 brings their sulfhydryl groups into significantly closer proximity, which, in the presence of an oxidizing Cu(II) in the metal binding pocket, might be sufficient to support disulfide formation, which does not otherwise occur. Further highlighting the localization of Cys332 is its position only 4 residues along the chain from His336, which coordinates metal in the active site. In contrast, AtNCED3 has six cysteine residues: Cys35, Cys191, Cys407, Cys409, Cys430, and Cys548, of which Cys35 could not be modeled because of its proximity to the N terminus, and none of the others was identified as being located within 10 Å of the iron-binding center.

Table 1. Homology-model-based Cys-Cys sulfur atom distances and Cys sulfur atom – iron distances for AtCCD1 (A) and AtNCED3 (B).

(A) AtCCD1.

<table>
<thead>
<tr>
<th>Distance (Å)</th>
<th>SC74</th>
<th>SC332</th>
<th>SC352</th>
<th>SC407</th>
<th>SC495</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC332</td>
<td>41.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC352</td>
<td>30.7</td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC407</td>
<td>15.1</td>
<td>32.8</td>
<td>23.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC495</td>
<td>20.5</td>
<td>34.8</td>
<td>25.2</td>
<td>27.8</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>28.8</td>
<td>18.6</td>
<td>8.5</td>
<td>22.2</td>
<td>23.1</td>
</tr>
</tbody>
</table>

(B) AtNCED3.

<table>
<thead>
<tr>
<th>Distance (Å)</th>
<th>SC191</th>
<th>SC407</th>
<th>SC409</th>
<th>SC430</th>
<th>SC548</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC407</td>
<td>38.7</td>
<td>7.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC409</td>
<td></td>
<td>34.6</td>
<td>6.3</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>SC430</td>
<td></td>
<td>6.3</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC548</td>
<td>20.1</td>
<td>27.9</td>
<td>24.3</td>
<td>23.2</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>22.1</td>
<td>18.3</td>
<td>12.4</td>
<td>13.6</td>
<td>17.7</td>
</tr>
</tbody>
</table>

Fig. 4. Secondary and tertiary structure analyses of AtCCD1. (A) Homology model of AtCCD1 based on the ACO crystal structure (Protein Data Bank accession No. 2BIW), maintains iron coordination based on interactions with the ‘N of four conserved histidine residues, including His222, His270, His336, and His523. Proximities of Cys352 and Cys332 are highlighted. (B) Amino acid sequence alignments of carotenoid cleavage enzymes. AtCCD1, PhCCD1, CsCCD, and AAZZ2349 all cleave 9,10 and (9',10') double bonds of carotenoids and are from *Arabidopsis thaliana*, crocus, petunia, and *Zea mays* respectively; AtCCD3 and Vp14 from *A. thaliana* and *Z. mays*, respectively, both cleave the 11,12 double bond of 9-cis epoxycarotenoids; ACO is from from *Syneccocystis*; AtCCD7 is a 9,10 double bond carotenoid cleavage dioxygenase from *A. thaliana*; AtCCD8 is a 13,14 double bond carotenoid cleavage dioxygenase from *A. thaliana*.

© 2008 NRC Canada
(Table 1B). As well, Cys430 and Cys409 are located in sufficiently close proximity to each other to putatively form a disulfide bond in the native structure.

Further, amino acid sequence alignment of select carotenoid cleavage enzymes indicates that Cys352 is conserved in AtCCD1 relatives (i.e., other enzymes known to cleave the 9,10 and 9,10′ double bonds of carotenoids), but not in AtNCED3 or any other non-AtCCD1-like carotenoid cleavage enzymes (Fig. 4B). However, it should be noted that some of these other enzymes do maintain alternate cysteines localized in sequential proximity to the equivalent Cys352 position. Specifically, AtNCED3 Cys430 is located two residues away along the amino acid chain from the equivalent AtCCD1 Cys352 position. Although this proximal sequential position might suggest that AtNCED3 Cys430 is equivalent to AtCCD1 Cys352, its more distal location from the iron site in the model (∼14 Å), and its putative involvement in a native disulfide with Cys409 (which would preclude it from any role in reducing active site Cu(II)) argue against this. As well, AtNCED3 Cys409 is not conserved in AtCCD1 (see supplementary data2), thus eliminating the putative disulphide bonding partner in the latter enzyme. Overall these secondary and tertiary structural analyses emphasize the uniqueness and proximity of the AtCCD1 Cys352 residue to the catalytic site in AtCCD1 and AtCCD1-like relatives. This proximity, along with that of the more distally located Cys332, could accommodate the cysteine-related silencing of the EPR signal described above and position the residue such that it may uniquely modulate metal or substrate binding or the cleavage reaction.

Characterization of AtCCD1 C352A mutant

To directly test the role of Cys352 in the AtCCD1 active site, a site specific mutation to alanine was constructed and the mutant protein was overexpressed and purified from E. coli, as described for the wild-type protein. UV/Vis spectra of the original C352A mutant, as well as EDTA- and Cu2+-treated versions, were virtually identical to the corresponding spectra of the wild-type enzyme (Fig. 5A), precluding any role for the residue in the modulation of the different metal-binding affinity or steric accessibility constraints observed compared with AtNCED3. However, EPR analysis of Cu2+-substituted C352A did yield a type II Cu EPR signal (Fig. 5B) with g and A values virtually identical to those of the Cu2+-substituted AtNCED3 enzyme. These results indicate that Cys352 is indeed responsible for the EPR silence of Cu2+-substituted wild-type AtCCD1, and supports the localized proximity of the residue to the catalytic site of the enzyme as identified in the homology model. This result also demonstrates that Cu2+ does substitute for Fe2+ in the active site of AtCCD1 despite the inability of EDTA to chelate the iron away from the enzyme. Related attempts to mutate cysteine residues in AtNCED3 led to irreversible aggregation of expressed protein (data not shown), making analysis impossible, but lending further emphasis to the possibility of a critical disulfide bond in this enzyme.

To further probe the role of Cys352 in AtCCD1, kinetic substrate cleavage analyses were carried out (Fig. 5C). The Vmax of AtCCD1 (18.8 pmol/(μg protein·h)) was found to be about 2.6 times that of C352A (7.3 pmol/(μg protein·h)), whereas the Km of AtCCD1 (3.5 μmol/L) was approximately 0.54 times that of C352A (6.24 μmol/L).

Overall, these results validate the homology model, which places Cys352 in proximity to the metal binding catalytic site in AtCCD1. The lack of a specific counterpart in AtNCED3, as suggested by both the homology model and

2 Supplementary data for this article are available on the journal website (http://bcb.nrc.ca) or may be purchased from the Depository of Unpublished Data, Document Delivery, CISTI, National Research Council Canada, Building M-55, 1200 Montreal Road, Ottawa, ON K1A 0R6. DUD 3749. For more information on obtaining material, refer to http://cisti-icist.nrc-cnrc.gc.ca/cms/unpub_e.html.
sequence alignments, is supported by the lack of any corresponding EPR silencing effect. Thus, Cys352 represents a unique feature in proximity to the catalytic site of the AtCCD1 homologue and might account for observed differences in metal-binding affinities and (or) accessibilities or substrate binding and (or) cleavage specificities. In terms of assigning a mechanistic role to this uniquely localized cysteine, the UV/Vis absorption analyses of the C352A mutant showed that it maintains metal binding characteristics that are similar to those of wild-type AtCCD1. However, kinetic analyses demonstrated that Cys352 may play a role at the level of cleavage-related parameters, including substrate binding and reaction rates. Substrate binding and reaction rates have been determined for a variety of different carotenoid cleavage enzymes, including cowpea NCED3 (Han et al. 2004), maize VP14 (Schwartz et al. 2003), Mouse 15,15’ β-carotene cleavage enzymes (Paik et al. 2001; Poliakov et al. 2005), and cyanobacterial ACOs (Ruch et al. 2005; Scherzinger et al. 2006), yielding a broad spectrum of affinities and rates ranging from K_m values of 1.2 – 43 μmol/L and V_{max} values of 0.4–1200 pmol/(μg enzyme-h), depending on the enzymes, substrates, and reaction conditions. Assays of substrate cleavage for wild-type AtCCD1 and the associated C352A mutant gave rise to kinetic values that correlate with the mid-range reported reaction rates and substrate affinities of other carotenoid cleavage enzymes. Deletion of the reducing side chain specifically led to a decrease in V_{max} and an increase in K_m thus highlighting the reduced substrate affinity and a slower rate of catalysis. Cysteine’s role in substrate binding and catalysis could involve the maintenance of an optimally reduced state in the active site (as supported by the observed reduction of Cu$^{2+}$ to Cu$^+$), or more simply, with creating specific steric substrate binding features or van der Waals contacts in the binding pocket. Experiments that further probe the significance of this residue in mediating the disparity in activities that exist between the different carotenoid cleavage enzymes are ongoing.

Acknowledgements

We thank Dr. J. Page, S. Polvi, and Dr. H. Chen (NRC/PB) for help with HPLC, Dr. O.A. Kharenko for discussions and Dr. P.C. Loewen (University of Manitoba) for critical reading of the manuscript. We gratefully acknowledge the NRC Crops for Enhanced Human Health Program and the Saskatchewan Structural Sciences Centre for supporting this work. This manuscript has been assigned NRCC No. 48422.

References

Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., et al. 2001. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in...

