Crystallization and Preliminary X-ray Diffraction Analysis of Catalase HPII from Escherichia coli

José Tormo, Ignacio Fita

Departament d'Enginyeria Química Escola Tècnica Superior d'Enginyers Industrials Universitat Politècnica de Catalunya Diagonal 647, 08028 Barcelona, Spain

Jacek Switala and Peter C. Loewen

Department of Microbiology
University of Manitoba
Winnipeg, MB R3T 2N2, Canada

(Received 14 November 1989; accepted 29 December 1989)

Green crystals of the hexameric catalase HPII from *Escherichia coli* have been obtained by the hanging-drop method. The crystals belong to the monoclinic space group P2 with a=123 Å, b=132 Å, c=93 Å, $\beta=112\cdot5^{\circ}$. There are three subunits in the asymmetric unit. The crystals diffract at least to $3\cdot2$ Å resolution and are suitable for further X-ray diffraction studies.

Catalase (EC 1.11.1.6; $H_2O_2:H_2O_2$ -oxidoreductase) is an enzyme that has been found in most aerobic organisms. It decomposes hydrogen peroxide to molecular oxygen and water:

$$2H_2O_2 \rightarrow 2H_2O + O_2$$
.

Crystals of catalase from a variety of sources have been described and some of them were used for structural investigations by X-ray diffraction and electron microscopy. The spatial organization of a non-heme hexameric catalase from *Thermus thermophilus* (Vainshtein et al., 1985), and three tetrameric catalases, from *Penicillium vitale* (Vainshtein et al., 1986), from beef liver (Murthy et al., 1981), and recently from *Micrococcus lysodeikticus* (Yusifov et al., 1989), are known at high resolution.

Two different catalases from Escherichia coli have been purified and characterized (Claiborne & Fridovich, 1979; Loewen & Switala, 1986). HPI (hydroperoxidase I) is a tetrameric enzyme containing the normal protoheme IX prosthetic group, but with larger than normal 84 kDa subunits. It is also unique in having an associated peroxidase activity (Claiborne & Fridovich, 1979). HPII is a monofunctional catalase but is unusual in most other respects including its hexameric structure, the heme-d-like prosthetic group that gives the enzyme its characteristic green colour and the 93 kDa size of the subunit (Loewen & Switala,

1986). More recently, the gene encoding the subunit of HPII, katE, has been cloned (Mulvey $et\ al.$, 1988) and a structure has been proposed for the HPII heme (Chiu $et\ al.$, 1989).

We now report the crystallization of catalase HPII. The enzyme was purified as described by Loewen & Switala (1986) from strain UM255 (pro leu rpsL hsdR endI lacY katG2 katE12::Tn10)transformed with pAMkatE22 (Mulvey et al., 1988), a plasmid containing katE. In one representative preparation, 320 mg of enzyme with a specific activity of 9950 units per milligram of protein was isolated from 82 g of cell paste. For crystallization, solutions of the lyophilized protein were prepared at concentration of10 to15 mg/ml50 mm-Tris·HCl buffer (pH 7·0). Crystals were obtained using the hanging-drop vapor diffusion method at 4°C using polyethylene glycol as precipitant. Best crystals were obtained from 10 to $20 \mu l$ droplets under the following initial conditions: 7 mg of protein per ml, 7% (w/v) polyethylene glycol 3350, 0.5 m-LiCl, 3.5 mm-NaN_3 in $50 \text{ mm-Tris} \cdot \text{HCl}$ (pH 7.0). The equilibrating reservoir consisted of 1 ml of 15% polyethylene glycol 3350, 1 m-LiCl similarly buffered. Crystals were obtained as prisms reaching a size of $0.6 \text{ mm} \times 0.3 \text{ mm} \times 0.05 \text{ mm}$ over one to two months. Typical crystals diffracted to about 3.2 Å resolution and were stable in the X-ray beam for about 12 hours. The most likely space group was determined to be P2 from inspection of the symmetry in precession photographs with unit cell constants a=123 Å (1 Å=0·1 nm), b=132 Å, c=93 Å, $\beta=112\cdot5^{\circ}$. With one molecule of the native protein ($M_{\rm r}=532,000$) in the unit cell a value of $2\cdot6$ ų/Da is obtained for $V_{\rm m}$ that falls within the range of volume-to-mass ratios commonly observed (Matthews, 1986). Hence, there is probably one oligomeric protein per unit cell and three subunits per asymmetric unit, the crystal 2-fold axis being coincident with a molecular dyad axis. This would correspond to a solvent content of about 53%. This crystal form appears to be suitable for further crystallographic investigation.

This work was supported by a grant BT87-0009 from the Plan Nacional de Biotecnologia (CICYT), Spain and a grant, A9600, from the Natural Sciences and Engineering Research Council of Canada. J.T. acknowledges a fellowship from the Ministerio de Educación y Ciencia.

References

- Chiu, J. T., Loewen, P. C., Switala, J., Gennis, R. B. & Timkovich, R. (1989). J. Amer. Chem. Soc. 111, 7046-7050.
- Claiborne. A. & Fridovich, I. (1979). J. Biol. Chem. 254, 4245–4252.
- Loewen, P. C. & Switala, J. (1986). Biochem. Cell Biol. 64, 638–646.
- Matthews, B. W. (1968). J. Mol. Biol. 33, 491-497.
- Mulvey, M. R., Sorbey, P. A., Triggs-Raine, B. L. & Loewen, P. C. (1988). Gene, 73, 337-345.
- Murthy, M. R. N., Reid, T. J., Sicignano, A., Tanaka, N. & Rossmann, M. G. (1981). J. Mol. Biol. 152, 465–499.
- Vainshtein, B. K., Melik-Adamyan, W. R., Barynin, V. V. & Vagin, A. A. (1985). J. Biosci. 8, 471.
- Vainshtein, B. K., Melik-Adamyan, W. R., Barynin, V. V., Vagin, A. A., Grebenko, A. I., Borisov, V. V., Bartels, K. S., Fita, I. & Rossmann, M. G. (1986). J. Mol. Biol. 188, 49-61.
- Yusifov, E. F., Grebenko, A. I., Barynin, V. V., Murshudov, G. N., Vagin, A. A. & Melik-Adamyan, W. R. (1989). Twelfth European Crystallographic Meeting, 2, 412.

Edited by R. Huber