Identification of a novel bond between a histidine and the essential tyrosine in catalase HPII of Escherichia coli

J. BRAVO, I. FITA, J. C. FERRER, W. ENS, A. HILLAR, J. SWITALA and P. C. LOEWEN

Protein Sci. 1997 6: 1016-1023
Identification of a novel bond between a histidine and the essential tyrosine in catalase HPII of *Escherichia coli*

**JERONIMO BRAVO, IGNACIO FITA, JUAN C. FERRER, WERNER ENS, ALEX HILLAR, JACEK SWITALAP AND PETER C. LOEWEN**

1Centro de Investigación y Desarrollo (C.S.I.C.), Jordi Girona Salgado 18-26, 08034 Barcelona, Spain
2Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
3Department of Physics, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
4Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2 Canada

(RSCEIVED December 16, 1996; ACCEPTED February 12, 1997)

**Abstract**

A bond between the N6 of the imidazole ring of His 392 and the C6 of the essential Tyr 415 has been found in the refined crystal structure at 1.9 Å resolution of catalase HPII of *Escherichia coli*. This novel type of covalent linkage is clearly defined in the electron density map of HPII and is confirmed by matrix-assisted laser desorption/ionization mass spectrometry analysis of tryptic digest mixtures. The geometry of the bond is compatible with both the sp² hybridization of the C6 atom and the planarity of the imidazole ring. Two mutated variants of HPII active site residues, H128N and N201H, do not contain the His 392-Tyr 415 bond, and their crystal structures show that the imidazole ring of His 392 was rotated, in both cases, by 80° relative to its position in HPII. These mutant forms of HPII are catalytically inactive and do not convert heme b to heme d, suggesting a relationship between the self-catalyzed heme conversion reaction and the formation of the His-Tyr linkage. A model coupling the two processes and involving the reaction of one molecule of H2O2 on the proximal side of the heme with compound I is proposed.

**Keywords:** catalase; crystal structure; *Escherichia coli*; heme; histidine-tyrosine linkage; protein modification

Catalases have been the object of study for almost a century. They are produced by most aerobic organisms as protection against the toxic effects of H2O2, which is degraded to O2 and H2O in the reaction: 2H2O2 → O2 + 2H2O. The enzyme from bovine liver has been the focus of extensive physical and kinetic studies, culminating in its sequence analysis and crystal structure determination in the early 1980s as a homotetramer of 35-kDa subunits (Murthy et al., 1981; Fita et al., 1986). The three-dimensional structures of four other catalases have been solved, including enzymes from *Penicillium vitale* (Vainshtein et al., 1981, 1986), *Proteus mirabilis* (Gouet et al., 1995), *Micrococcus luteus* (Mursudov et al., 1992), and *Escherichia coli* (Bravo et al., 1995), revealing extensive structural similarities among all five proteins, not surprising in view of the high sequence similarity in the core of the subunit around the active site.

Despite the similarities in the core, *P. vitale* and *E. coli* catalases have much larger subunits of more than 80 kDa, and a different heme giving rise to additional structural features, enhanced stability, and peculiarities in the catalytic properties compared with the small subunit enzymes. The additional sequence is contained in extensions at the amino and carboxyl ends. In HPII of *E. coli*, 90 additional residues at the N-terminus interact extensively with an adjacent subunit to produce an unusually stable quaternary structure. The 170 additional residues at the carboxyl terminus are folded in a flavodoxin-like domain whose possible roles remain unknown (Bravo et al., 1995). Another relevant difference from the small subunit catalases lies in the presence of a cis-hydroxy spirulactone heme d that is “flipped” 180° around the axis defined by the α-γ meso carbon atoms, relative to the orientation of the heme b found in the smaller catalases (Mursudov et al., 1996). The oxidation of the heme in HPII is catalyzed by HPII itself, which uses H2O2 as substrate (Loewen et al., 1993). However, the modification occurs on the proximal side of ring III of the heme, at a significant distance from the catalytic residues, His 128 and Asn 201, and a satisfactory mechanism for the oxidation has yet to be proposed.

Another modification found in HPII involves the blockage of the sulphydryl group of Cys 438, one of two cysteines in the protein. The modification, with a mass of 42, is sensitive to alkali, but not to hydroxylamine, methylamine, or reducing agents, eliminating many common sulphydryl blocking groups (Sevinc et al., 1995) and, to date, remains undefined. Another unusual modifica-

Reprint requests to: Peter C. Loewen, Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2 Canada; e-mail: peter_loewen@umanitoba.ca.

†Present address: Laboratory of Molecular Biophysics, The Rex Richards Building, South Parks Road, Oxford OX1 3OU, United Kingdom.
tion has been characterized in the catalase from *P. mirabilis* where a methionine sulfone is found adjacent to the active site histidine, replacing the more common valine found in most other catalases (Buzay et al., 1995).

From these observations, it has become clear that catalases in general and HP II in particular contain a number of unusual structural modifications. The structure of HP II, at 1.9 Å resolution, and of two inactive variants, H128N at 1.9 Å and N201H at 2.2 Å, have been refined recently, and a detailed analysis of the structure is in progress currently. This paper describes the identification of another novel modification, a histidine-tyrosine linkage, that is present in HP II, but not in the inactive H128N and N201H variants. This modification was not evident in the earlier analysis (Bravo et al., 1995) at the lower resolution, 2.8 Å, then available.

**Results**

**HP II crystal structure reveals a novel His-Tyr association**

In performing the refinement of the structure of native catalase HP II, the electron density maps revealed that the imidazole ring of His 392 had a strong tendency to be situated in close contact to Tyr 415, the tyrosinate fifth ligand of the heme iron, despite the restraints imposed by steric repulsion. When the nonbonded contacts between His 392 and Tyr 415 were not included in the refinement, the imidazole ring was oriented such that its N, was located less than 1.6 Å from the C, of Tyr 415 in the four crystallographically independent HP II subunits (Fig. 1A). This distance is, within experimental error, what is expected for a C-N covalent bond (1.48 Å; MacGillavry & Rieck, 1968), and precludes a noncovalent interaction. The 2F, - F, and omit maps reveal a clear connection between His 392 and Tyr 415 (Fig. 1B), with an electron density as strong as any other covalent bond along the main chain, suggesting that the bond exists in a high proportion, close to 100%, of the subunits. Furthermore, the orientation of the imidazole ring is defined very clearly by the presence of a water molecule that forms a linear hydrogen bond, distance 2.8 Å, with the N, atom of the imidazole (Fig. 1A). The geometry of this novel His-Tyr bond is compatible with both the sp3 hybridization of the Tyr 415-C, atom and the planarity of the imidazole ring, which makes a dihedral angle of 69° with the plane defined by the C, C, C, atoms of Tyr 415.

By contrast, the electron density maps corresponding to H128N and N201H, two mutated inactive variants of HP II, show a clear separation of the imidazole ring of His 392 from Tyr 415, a result of rotation of the imidazole ring by about 80° compared to its location in HP II. Results for H128N are given in Figure 1C. This rotation moves the N, to a point 3.5 Å away from C, of Tyr 415, precluding any possible association between the two atoms.

**Analysis of tryptic peptides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)**

In order to corroborate the presence of the novel C-N linkage between His 392 and Tyr 415, the peptides generated by trypsin digestion were subjected to mass analysis using MALDI-MS. Complete digestion of HP II by trypsin should generate a mixture of 75 peptide products, which will be further complicated, particularly below 3,000 mass units, by the presence of partial digest products. His 392 and Tyr 415 are situated on separate but adjacent tryptic peptides (Fig. 2). The His 392-containing peptide, 39 (numbered from the amino end), extends from Asn 378 to Arg 411, and has a predicted mass of 3,778, placing it in a region of the mass spectrum where unambiguous identification is expected. The Tyr 415-containing peptide, 40, extends from Leu 412 to Arg 422, and has a predicted mass of 1,331, placing it in a region of the mass spectrum with many other similar-sized peptides, complicating its identification. Peptides 39 and 40, joined through a peptide bond, would produce a peptide (39-40) of predicted mass 5,089, whereas a junction through the putative C, N, bond would give rise to a peptide (39+40) of predicted mass 5,106. These two peptides and one partial trypsin product that might contain the C, N, bond with mass of 5,720 are also shown in Figure 2.

The 3,000–6,000 mass range of the trypsin digest mixtures of HP II and its N201H variant are shown in Figure 3A and B, respectively. The digest mixture from the N201H variant (Fig. 3B) contains a series of fragments that are consistent with there being no linkage between fragments 39 and 40 (containing His 392 and Tyr 415, respectively). The 3,778 mass peak corresponds to fragment 39, and the 4,391 mass peak corresponds to the partial digest product composed of fragments 38 and 39. Significantly, there are no peaks at either 5,089 or 5,106 that would indicate a combination of fragments 39 and 40 either through a peptide bond not cleaved by trypsin, or the putative C, N, bond between His 392 and Tyr 415. The 3,457 mass peak varied among digests and could not be attributed to any one tryptic fragment or combination of two fragments, suggesting that it was a combination of at least three fragments.

The trypsic mixture from HP II (Fig. 3A) differed significantly from the N201H mixture in containing two peaks with masses of 5,107 and 5,721. The 5,107 mass fragment is consistent with fragments 39+40 being joined by the C, N, bond between His 392 and Tyr 415 rather than the partial tryptic product (39–40), which would have a clearly distinguishable mass of 5,089. The 5,721 mass fragment can be ascribed to the partial tryptic fragment, 38–39, joined to fragment 40 by the C, N, bond between His 392 and Tyr 415 (Fig. 2). Larger peptide products were not observed. It should also be noted that the ratio of peaks with masses of 3,778 (complete digest fragment) and 4,391 (partial digest fragment) is similar to the ratio of peaks with masses of 5,107 and 5,721.

**Discussion**

Novel covalent linkages and posttranslational modifications are becoming more common as protein chemistry techniques become more sensitive. The methionine sulfone found in the active site of the catalase from *P. mirabilis* (Buzay et al., 1995), the cysteine-sulfenic acid in the NADH peroxidase from *Streptococcus faecalis* (Stehle et al., 1991), the modified cysteine in catalase HP II of *E. coli* (Sevinc et al., 1995), and the internal cyclization of the peptide backbone with accompanying oxidation of the C, C, bond of Tyr 66 in the green fluorescent protein (Heim et al., 1994; Ormo et al., 1996) are all recent findings. The C, N, bond joining His 392 to Tyr 415, observed now in active catalase HP II, is yet another example of a novel and unexpected linkage found deep within a protein. A diagram of the His-Tyr linkage in relation to the heme and a few other surrounding residues is shown in Figure 4. The presence of this novel bond is well supported by both the electron density of the corresponding crystal structures and the sizes of fragments in the tryptic digest maps. However, the two techniques seem to differ with respect to the proportion of HP II subunits containing the covalent C-N bond.
density between the imidazole of His 392 and the benzyl carbon of Tyr 415 suggests that the linkage exists in a very high proportion, close to 100%, of the subunits. In turn, the tryptic digests reveal that less than a third of the fragments containing His 392 (fragments with masses 3,778, 4,391, 5,107, and 5,721) are linked to the Tyr 415-containing fragment (fragments with mass 5,107 and 5,721). This discrepancy may indicate that the Cp-N6 bond is relatively unstable under the conditions used for tryptic cleavage of the protein and mass determination of the digests fragments. The ratio of complete to partially digested fragments is independent of the presence of the His-Tyr bond, consistent with an equal sensitivity of the C-N bond regardless of the completeness of the tryptic digests.

The source of the Cp-N6 bond is a matter for conjecture at this stage. Perhaps the most significant observation, aside from the novel linkage itself, is the fact that the linkage is present only in HPII subunits where the heme b to heme d conversion (as described in Fig. 5) has also occurred. A satisfactory mechanistic
Novel His-Tyr bond in catalase HPII of E. coli

A concerted reaction ultimately resulting in hydroxyl addition to the C\textsubscript{-}C\textsubscript{a} bond of Tyr 66 in the green fluorescent protein (Cubitt et al., 1995).

In addition to coupling the two novel reactions catalyzed by HPII, the heme conversion and the C\textsubscript{a}-C\textsubscript{b} bond formation, the proposed mechanism is significant in explaining how the oxidation of ring III of the heme takes place so far away from the catalytic residues His 128 and Asn 201, as shown in Figure 4. Mutation of either of these residues can prevent both the catalytic reaction and heme modification, but a rationalization of how such distantly situated residues might control the heme conversion on the opposite side of the heme was not presented. It is evident from the electron density maps that there has been no change in the mainchain positions, and only subtle changes in the side chains on the proximal side of the heme resulting from these mutations. Consequently, the lack of His-Tyr bond formation in these mutant proteins is not a result of reduced access of a necessary reactant to the region. By involving compound I formation, which requires His 128 and Asn 201, as a step in the heme oxidation, we can rationalize the involvement of these residues in heme conversion.

### Table: Fragment Mass and Sequence

<table>
<thead>
<tr>
<th>Fragment</th>
<th>Mass</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>#38</td>
<td>632</td>
<td>MVLNR</td>
</tr>
<tr>
<td>#39</td>
<td>3778</td>
<td>NPDNFFAENEQAAFHGPVLDFTNDPLLQGR</td>
</tr>
<tr>
<td>#40</td>
<td>1331</td>
<td>LFSYTDQTISRF</td>
</tr>
<tr>
<td>#38-39</td>
<td>4391</td>
<td>MVLNRNPDNFFAENEQAAFHGPVLDFTNDPLLQGR</td>
</tr>
<tr>
<td>#39-40</td>
<td>5089</td>
<td>NPDNFFAENEQAAFHGPVLDFTNDPLLQGRLFSYTDQTISRF</td>
</tr>
<tr>
<td>#39+40</td>
<td>5106</td>
<td>LFSYTDQTISRF</td>
</tr>
<tr>
<td>#38-39+40</td>
<td>5720</td>
<td>MVLNRNPDNFFAENEQAAFHGPVLDFTNDPLLQGR</td>
</tr>
</tbody>
</table>

Fig. 2. Sequences and calculated masses of peptides formed on trypsin digestion of HPII. The tryptic digest fragments are numbered from the amino end and only those fragments containing or adjacent to fragments containing His 392 and Tyr 415 are shown. The sequences and calculated masses of two peptides that would arise from a linkage between His 392 and Tyr 415 are also shown. His 392 and Tyr 415 are highlighted in larger font and the linkage between them is indicated by a vertical dash between the overlapped sequences. The contribution of protonated residues are accounted for in the calculated values.

An explanation for the autocatalytic heme conversion has never been proposed, but, if we assume that this reaction is linked to the His 392--Tyr 415 bond formation, we can propose the mechanism shown in Figure 6. The first part of the process that generates compound I and water in a reaction between H\textsubscript{2}O\textsubscript{2} and the heme on its distal side is not shown in Figure 6, nor are the active site residues His 128 and Asn 201, required for compound I formation. Compound I, containing an oxo-Fe\textsuperscript{IV} moiety and a porphyrin cation radical, is the starting point in Figure 6A. A second H\textsubscript{2}O\textsubscript{2} can reach the essential Tyr 415 through the cavity on the heme proximal side to be oriented, as shown by hydrogen bonds with one or more of the adjacent Ser 414, Thr 418, or Glu 419 residues. A concerted reaction ultimately resulting in hydroxyl addition to ring III of the heme may begin with a proton being abstracted from the N\textsubscript{ε} of His 392. This would result in the N\textsubscript{δ} of His 392 attacking the C\textsubscript{b} of Tyr 415, displacing a hydride ion, which, in turn would attack the H\textsubscript{2}O\textsubscript{2} molecule, causing the heterolytic cleavage of the O-O bond to form water and a hydroxide ion. The latter would react with the porphyrin π cation radical, producing the neutral radical shown in Figure 6B. The subsequent transfer of one electron from the heme to the oxo-iron complex would generate a cation that would facilitate the cyclization of the propionate group into the spirolactone (Fig. 6C). The net effect of this reaction sequence is that oxygen in the oxo-iron complex of compound I is converted to water, resulting in two H\textsubscript{2}O\textsubscript{2} molecules (one used in the generation of compound I and one in Fig. 6A) being converted to three molecules of water and one hydroxide group on the heme.

The formation of compound I is an obvious necessity for initiation of the mechanism, but the "trigger" of the mechanism on the proximal side is not so obvious. Extraction of the N\textsubscript{ε} proton might simply involve His 395 and Asp 197, which are situated appropriately. Alternatively, an anionic species found binding to compound I of \textit{P. mirabilis} catalase (Gouet et al., 1996), if present in HPII, might serve to extract the proton. The approximate location of such an anion in HPII (based on the \textit{P. mirabilis} catalase structure) is shown in Figure 4, and is clearly in a location where it could accept a proton from the imidazole of His 392. The identity of the anionic species remains unknown and its presence in HPII is unconfirmed, but the fact that the anion may be present in compound I as in the \textit{P. mirabilis} catalase provides another explanation for why inactive variants of the enzyme do not catalyze heme conversion or generate the His-Tyr linkage.

Yet another possibility is that the initial step in the mechanism depicted in Figure 6A is not a concerted process, and the initial abstraction of a hydride ion from the C\textsubscript{b} of Tyr 415 generates an intermediate carbonium ion, stabilized by resonance with the phenyl ring, which subsequently experiences the nucleophilic attack of the N\textsubscript{δ} of His 392. A similar oxidation, in this case carried out by atmospheric oxygen, has been proposed for the oxidation of the C\textsubscript{a}-C\textsubscript{b} bond of Tyr 66 in the green fluorescent protein (Cubitt et al., 1995).

### Table: Fragment Mass and Sequence

<table>
<thead>
<tr>
<th>Fragment</th>
<th>Mass</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>#38</td>
<td>632</td>
<td>MVLNR</td>
</tr>
<tr>
<td>#39</td>
<td>3778</td>
<td>NPDNFFAENEQAAFHGPVLDFTNDPLLQGR</td>
</tr>
<tr>
<td>#40</td>
<td>1331</td>
<td>LFSYTDQTISRF</td>
</tr>
<tr>
<td>#38-39</td>
<td>4391</td>
<td>MVLNRNPDNFFAENEQAAFHGPVLDFTNDPLLQGR</td>
</tr>
<tr>
<td>#39-40</td>
<td>5089</td>
<td>NPDNFFAENEQAAFHGPVLDFTNDPLLQGRLFSYTDQTISRF</td>
</tr>
<tr>
<td>#39+40</td>
<td>5106</td>
<td>LFSYTDQTISRF</td>
</tr>
<tr>
<td>#38-39+40</td>
<td>5720</td>
<td>MVLNRNPDNFFAENEQAAFHGPVLDFTNDPLLQGR</td>
</tr>
</tbody>
</table>

Fig. 2. Sequences and calculated masses of peptides formed on trypsin digestion of HPII. The tryptic digest fragments are numbered from the amino end and only those fragments containing or adjacent to fragments containing His 392 and Tyr 415 are shown. The sequences and calculated masses of two peptides that would arise from a linkage between His 392 and Tyr 415 are also shown. His 392 and Tyr 415 are highlighted in larger font and the linkage between them is indicated by a vertical dash between the overlapped sequences. The contribution of protonated residues are accounted for in the calculated values.
Fig. 3. Mass analysis of the mixtures of peptide fragments generated by trypsin digestion of HPII (A) and the N201H variant (B). Only the 3000–6000 mass range is shown.

Furthermore, the puzzle of how the oxidation could occur on the proximal side of the heme is explained by the involvement of a proximal-side H$_2$O$_2$ and residues immediately below ring III, as postulated in the recent report of Gouet et al. (1996).

The _P. vitale_ catalase (PVC), which closely resembles HPII in size and structure, also contains the cis-hydroxy spirolactone heme $d$ moiety, and one might logically expect the heme conversion to involve a reaction similar to HPII. However, His 392 is replaced by Glu (or Gln) (W.R. Melik-Adamyan, pers. comm.), which precludes the formation of a His-Tyr bond and calls into question the concerted mechanism in Figure 6. One possibility is that the heme conversion mechanism is different in PVC and has adapted to the absence of the imidazole ring. For example, the presence of a water molecule on the proximal side of the heme would be sufficient to explain the formation of the cis-hydroxy spirolactone heme $d$ as shown in Figure 7. Compound I is again the starting point and the addition of a hydroxyl group from a proximal water molecule to the porphyrin cation (Fig. 7A) would lead to a radical structure depicted in Figure 7B. This intermediate would evolve in a similar fashion to the radical in Figure 6B, leading to the reduction of the oxo-iron species (Fig. 7C) and the formation of the spirolactone ring (Fig. 7D).

Despite the logic of coupling compound I formation to both heme modification and His-Tyr bond formation, yet another possibility is that the two modification reactions occur independently. In this event, the heme modification in both enzymes may involve the mechanism shown in Figure 7A, B, C, and D, and the His-Tyr bond formation in HPII involves reduction of hydrogen peroxide to two molecules of water, as shown in Figure 7E. An argument against this possibility is that it does not explain why inactive catalases lack the His-Tyr bond.

The possible catalytic implications of the His-Tyr bond in HPII are also an open subject. The presence of the extra linkage should
introduce rigidity in the active center, and the extended structure could facilitate the movement of electrons in a larger region. Catalytic comparisons of HPII and PVC are being planned and variants of HPII that mimic the PVC proximal-side organization are now being engineered into HPII as the next stage of this study.

**Materials and methods**

**Enzyme purification**

Cultures of *E. coli* strain UM255 pro leu rpsL hsdM hsdR end1 lacY katG2 katE::Tn10 recA (Mulvey et al., 1988) transformed with plasmids pAMkatE72 (von Ossowski et al., 1991), pH128N, or pN201H (Loewen et al., 1993) containing the *katE* gene or its mutant variants encoding HPII, the H128A, or the N201H variants, respectively, were grown in Luria broth containing 10 g/L tryptone, 5 g/L yeast extract, and 5 g/L NaCl. Growth of the mutant variants was for 22 h at 28 °C, and of the wild-type HPII was for 16 h at 37 °C with shaking. Cells were harvested and HPII was isolated as described previously (Loewen & Switala, 1986). DEAE cellulose (Whatman) replaced DEAE Sephadex.

**Crystallization and data collection**

Crystals of HPII, the H128N variant, and the N201H variant were obtained as described previously (Bravo et al., 1995). Diffraction data sets were collected using synchrotron radiation at 0.98 Å from the Synchrotron in Hamburg, Germany. Samples of catalase HPII and the variant H128N were flash frozen during data collection. Diffraction from crystals of N201H was collected at room temperature. All data sets were processed and scaled using DENZO and SCALEPACK (Otwinowski, 1993) (Table 1). Automatic refinement steps were done with the program XPLOR (Briinger, 1992) and were alternated with inspection and manual rebuilding using the graphic programs TURBO-FRODO (Rouse & Cambillau, 1994) and O (Jones et al., 1990). The corresponding final crystallographic agreement factors $R$ and $R_{int}$ are also indicated in Table 1.

**MALDI-MS**

Protein (250 μg) was boiled for 3 min in 50 mM potassium phosphate, pH 7.0, and mixed with 7 μg of trypsin at room temperature for 1 h. The solution was boiled a second time and treated with an additional 7 μg of trypsin for 1 h, after which the solution was boiled and lyophilized. The dried sample was resuspended in 2 mL of saturated $a$-cyano-$4$-hydroxycinnamic acid in acetonitrile/0.1% trifluoroacetic acid (1:2 by vol). Two microliters were applied to the sample probe and air dried for MALDI-MS using the Manitoba reflecting time-of-flight mass spectrometer (Ens et al., 1993). The instrument was operated in positive-ion linear mode. Desorption/ionization was achieved by a pulsed ultraviolet laser beam ($N_2$ laser, $\lambda = 337$ nm). The acceleration voltage was 30 kV and the
laser power density was approximately $10^9$ W/cm$^2$. For better target uniformity, the crushed-matrix method, in which the matrix was crushed with a glass slide, was employed (Xiang & Beavis, 1994). The mass spectrum of each sample was the average of more than 100 shots. For mass calibration, insulin (5,733 Da) was used.

**Acknowledgments**

We thank Prof. William Melik-Adamany for facilitating access to the refined PVC structure prior to its publication. This work was supported by an operating grant from the Natural Sciences and Engineering Research Council (NSERC) (OGP9600) to P.C.L. and a postgraduate scholarship from NSERC to A.H. Work in Barcelona was supported by grants PB92-0707 and PB95-0218 to I.F. J.B. was the recipient of a doctoral fellowship from the Generalitat de Catalunya. Data collection in Hamborg was supported by the Human Capital Mobility Project on contract CHGE-CT93-0040.

**References**


---

**Table 1. X-ray statistics and agreement factors**

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Temp.</th>
<th>$R_{cryst}$ (%)</th>
<th>Completeness (%)</th>
<th>Resolution (Å)</th>
<th>$I/σ(I)$ last shell</th>
<th>R-factor (%)</th>
<th>Rfree (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPII</td>
<td>100 K</td>
<td>8.9</td>
<td>98</td>
<td>1.9</td>
<td>2.5</td>
<td>16.0</td>
<td>21.1</td>
</tr>
<tr>
<td>H128N</td>
<td>100 K</td>
<td>9.6</td>
<td>92</td>
<td>1.9</td>
<td>3.1</td>
<td>14.8</td>
<td>21.0</td>
</tr>
<tr>
<td>N201H</td>
<td>Room</td>
<td>8.9</td>
<td>77</td>
<td>2.2</td>
<td>2.9</td>
<td>18.5</td>
<td>---a</td>
</tr>
</tbody>
</table>

*a* Strict noncrystallographic symmetry was maintained between the four subunits in the crystal asymmetric unit.
Novel His-Tyr bond in catalase HP II of E. coli


